Interesting Surfaces


Algebraic Cylinders
![ImplicitPlot3D[2 x^4 - 3 x^2 y + y^2 - 2 y^3 + y^4 == 0, {x, -4, 4}, {y, -4, 4}, {z, -2, 2}, Boxed -> False] ;](https://orig00.deviantart.net/697f/f/2017/341/2/9/interestingsurfaces_3_by_tuscriaturas-dbw1781.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_4.gif]](https://orig00.deviantart.net/f940/f/2017/341/5/3/interestingsurfaces_4_by_tuscriaturas-dbw177y.gif)
Astrodal Ellipsoid
![a = 1 ; b = 1 ; c = 1 ; ParametricPlot3D[{(a Cos[u] Cos[v])^3, (a Sin[u] Cos[v])^3, (c Sin[v])^3}, {u, -Î, Î}, {v, -Î, Î}, Boxed -> False, Axes -> False] ;](https://orig00.deviantart.net/5cf6/f/2017/341/5/e/interestingsurfaces_5_by_tuscriaturas-dbw177s.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_6.gif]](https://orig00.deviantart.net/7e13/f/2017/341/a/a/interestingsurfaces_6_by_tuscriaturas-dbw177n.gif)
Barth Sextic
![t = 0.5 (1 + 5^(1/2)) ; ImplicitPlot3D[4 (t^2 x^2 - y^2) (t^2 y^2 - z^2) (t^2 z^2 - z^2) - (1 ... + z^2 - 1)^2 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, PlotPoints -> 30, Boxed -> False] ;](https://orig00.deviantart.net/12e2/f/2017/341/7/6/interestingsurfaces_7_by_tuscriaturas-dbw177h.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_8.gif]](https://orig00.deviantart.net/235a/f/2017/341/4/5/interestingsurfaces_8_by_tuscriaturas-dbw177c.gif)
Barth Decic
![t = 0.5 (1 + 5^(1/2)) ; w = 1 ; ImplicitPlot3D[8 (x^2 - t^4 y^2) (y^2 - t^4 z^2) (z^2 - t^4 x^ ... (x^2 + y^2 + z^2 - (2 - t) w^2)^2 == 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Boxed -> False] ;](https://orig00.deviantart.net/68ab/f/2017/341/e/7/interestingsurfaces_9_by_tuscriaturas-dbw1778.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_10.gif]](https://orig00.deviantart.net/ad77/f/2017/341/c/d/interestingsurfaces_10_by_tuscriaturas-dbw1771.gif)
Bicorn
![ImplicitPlot3D[y^2 (1 - (x^2 + z^2)) - (x^2 + z^2)^2 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/674d/f/2017/341/8/b/interestingsurfaces_11_by_tuscriaturas-dbw176z.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_12.gif]](https://orig00.deviantart.net/5241/f/2017/341/7/a/interestingsurfaces_12_by_tuscriaturas-dbw176v.gif)
Bifolia
![a = 3 ; ImplicitPlot3D[(x^2 + y^2 + z^2)^2 - a (z^2 + z^2) y == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False] ;](https://orig00.deviantart.net/2b3d/f/2017/341/4/e/interestingsurfaces_13_by_tuscriaturas-dbw176r.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_14.gif]](https://orig00.deviantart.net/7875/f/2017/341/8/3/interestingsurfaces_14_by_tuscriaturas-dbw176l.gif)
Bohemian Dome
![a = 0.5 ; b = 1.5 ; c = 1 ; ParametricPlot3D[{a Cos[u], b Cos[v] + a Sin[u], c Sin[v]}, {u, 0, 2 Î}, {v, 0, 2 Î}, Boxed -> False, Axes -> False] ;](https://orig00.deviantart.net/2ba0/f/2017/341/a/2/interestingsurfaces_15_by_tuscriaturas-dbw176f.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_16.gif]](https://orig00.deviantart.net/fe55/f/2017/341/9/3/interestingsurfaces_16_by_tuscriaturas-dbw176a.gif)
Boy Surface
![ImplicitPlot3D[64 (1 - z)^3 z^3 - 48 (1 - z)^2 z^2 (3 x^2 + 3 y^2 + 2 z^2) + 12 (1 - z) z (27 ... y^2) + 4 z^4) == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False, PlotPoints -> 50] ;](https://orig00.deviantart.net/fae8/f/2017/341/d/4/interestingsurfaces_17_by_tuscriaturas-dbw1765.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_18.gif]](https://orig00.deviantart.net/b135/f/2017/341/2/c/interestingsurfaces_18_by_tuscriaturas-dbw1760.gif)
Cassini Ovals
![a = 0.45 ; b = 0.5 ; c = 16 ; ImplicitPlot3D[(x^2 + y^2 + z^2 + a^2)^2 - c a^2 (z^2 + z^2 - b^2) == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/641e/f/2017/341/a/a/interestingsurfaces_19_by_tuscriaturas-dbw175w.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_20.gif]](https://orig00.deviantart.net/0dfb/f/2017/341/8/1/interestingsurfaces_20_by_tuscriaturas-dbw175p.gif)
Cayley cubic
![ImplicitPlot3D[-5 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 y + z^2 x) + 2 (x y + x z + y z) == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/b9a2/f/2017/341/d/0/interestingsurfaces_21_by_tuscriaturas-dbw175m.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_22.gif]](https://orig00.deviantart.net/7281/f/2017/341/6/1/interestingsurfaces_22_by_tuscriaturas-dbw175l.gif)
Chair
![k = 5 ; a = 0.95 ; b = 0.8 ; ImplicitPlot3D[(x^2 + y^2 + z^2 - a k^2)^2 - b ((z - k)^2 - 2 x^2 ... k)^2 - 2 y^2) == 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Boxed -> False, PlotPoints -> 40] ;](https://orig00.deviantart.net/e9d7/f/2017/341/2/c/interestingsurfaces_23_by_tuscriaturas-dbw175h.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_24.gif]](https://orig00.deviantart.net/0209/f/2017/341/d/c/interestingsurfaces_24_by_tuscriaturas-dbw175b.gif)
Crossed Trough
![ImplicitPlot3D[x^2 z^2 - y == 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Boxed -> False, PlotPoints -> 30] ;](https://orig00.deviantart.net/3a9a/f/2017/341/b/c/interestingsurfaces_25_by_tuscriaturas-dbw1757.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_26.gif]](https://orig00.deviantart.net/d55b/f/2017/341/4/f/interestingsurfaces_26_by_tuscriaturas-dbw1752.gif)
Cuibic Saddle
![ImplicitPlot3D[x^3 - y^3 - z == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/7139/f/2017/341/2/6/interestingsurfaces_27_by_tuscriaturas-dbw174t.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_28.gif]](https://orig00.deviantart.net/b5b8/f/2017/341/a/5/interestingsurfaces_28_by_tuscriaturas-dbw174n.gif)
Cushion
![ImplicitPlot3D[z^2 x^2 - z^4 - 2 z x^2 + 2 z^3 + x^2 - z^2 - (x^2 - z)^2 - y^4 - 2 x^2 y^2 - y ... 2 y^2 z + y^2 == 0, {x, -4, 4}, {y, -3, 3}, {z, -4, 4}, Boxed -> False, PlotPoints -> 60] ;](https://orig00.deviantart.net/712f/f/2017/341/9/e/interestingsurfaces_29_by_tuscriaturas-dbw174k.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_30.gif]](https://orig00.deviantart.net/bd12/f/2017/341/9/3/interestingsurfaces_30_by_tuscriaturas-dbw174b.gif)
Dervish
![a = 1/5 (-8) (1 + 1/5^(1/2)) (5 - 5^(1/2))^(1/2) ; c = (5 - 5^(1/2))^(1/2)/2 ; ImplicitPlot3D[ ... (1/2)) z^2)^2 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False, PlotPoints -> 40] ;](https://orig00.deviantart.net/f987/f/2017/341/e/2/interestingsurfaces_31_by_tuscriaturas-dbw1744.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_32.gif]](https://orig00.deviantart.net/6cc2/f/2017/341/b/a/interestingsurfaces_32_by_tuscriaturas-dbw1740.gif)
Devil's Curve Variant
![ImplicitPlot3D[x^4 + 2 x^2 z^2 - 0.36 x^2 - y^4 + 0.25 y^2 + z^4 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False, PlotPoints -> 40] ;](https://orig00.deviantart.net/d335/f/2017/341/c/1/interestingsurfaces_33_by_tuscriaturas-dbw173w.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_34.gif]](https://orig00.deviantart.net/eab5/f/2017/341/1/f/interestingsurfaces_34_by_tuscriaturas-dbw173s.gif)
Dini's Surface
![a = 1 ; b = 0.2 ; ParametricPlot3D[{a Cos[u] Sin[v], a Sin[u] Sin[v], a (Cos[v] + Log[Tan[v/2]]) + b u}, {u, 0, 4 Î}, {v, 0.001, 2}, Boxed -> False, Axes -> False] ;](https://orig00.deviantart.net/b385/f/2017/341/a/2/interestingsurfaces_35_by_tuscriaturas-dbw173p.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_36.gif]](https://orig00.deviantart.net/4aff/f/2017/341/f/1/interestingsurfaces_36_by_tuscriaturas-dbw173j.gif)
Dupin Cyclid
double crescent
![r0 = 4.9 ; r1 = 5 ; dx = 2 ; dy = 0 ; ri = 3 ; ImplicitPlot3D[(r1^2 - dy^2 - (dx + r0)^2) (r1^ ... ^2 y^2 + ri^8 == 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Boxed -> False, PlotPoints -> 30] ;](https://orig00.deviantart.net/e91c/f/2017/341/a/2/interestingsurfaces_37_by_tuscriaturas-dbw173h.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_38.gif]](https://orig00.deviantart.net/ed84/f/2017/341/b/d/interestingsurfaces_38_by_tuscriaturas-dbw1739.gif)
degenerate w.arch
![r0 = 3 ; r1 = 5 ; dx = 3 ; dy = 0 ; ri = 9 ; ImplicitPlot3D[(r1^2 - dy^2 - (dx + r0)^2) (r1^2 ... + ri^8 == 0, {x, -30, 30}, {y, -30, 30}, {z, -30, 30}, Boxed -> False, PlotPoints -> 30] ;](https://orig00.deviantart.net/3821/f/2017/341/5/c/interestingsurfaces_39_by_tuscriaturas-dbw1736.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_40.gif]](https://orig00.deviantart.net/e7d0/f/2017/341/0/d/interestingsurfaces_40_by_tuscriaturas-dbw1734.gif)
plain
![r0 = 6 ; r1 = 0.5 ; dx = 3 ; dy = 0 ; ri = 12 ; ImplicitPlot3D[(r1^2 - dy^2 - (dx + r0)^2) (r1 ... + ri^8 == 0, {x, -30, 30}, {y, -50, 20}, {z, -30, 30}, Boxed -> False, PlotPoints -> 50] ;](https://orig00.deviantart.net/b4eb/f/2017/341/6/6/interestingsurfaces_41_by_tuscriaturas-dbw1731.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_42.gif]](https://orig00.deviantart.net/1252/f/2017/341/d/f/interestingsurfaces_42_by_tuscriaturas-dbw172x.gif)
Ennepers Surface
![ParametricPlot3D[{u - u^3/3 + u v^2, v - v^3/v + u^2 v, u^2 - v^2}, {u, -2, 2}, {v, -2, 2}, Boxed -> False, Axes -> False] ;](https://orig00.deviantart.net/09d1/f/2017/341/5/f/interestingsurfaces_43_by_tuscriaturas-dbw172v.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_44.gif]](https://orig00.deviantart.net/f750/f/2017/341/d/9/interestingsurfaces_44_by_tuscriaturas-dbw172u.gif)
Folium Surface
![a = 1 ; b = 1 ; ImplicitPlot3D[(y^2 + z^2) (1 + (b - 4 a) x) + x^2 (1 + b) == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False] ;](https://orig00.deviantart.net/2e40/f/2017/341/d/1/interestingsurfaces_45_by_tuscriaturas-dbw172s.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_46.gif]](https://orig00.deviantart.net/968a/f/2017/341/3/9/interestingsurfaces_46_by_tuscriaturas-dbw172p.gif)
Glob
![ImplicitPlot3D[0.5 x^5 + 0.5 x^4 - (y^2 + z^2) == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False] ;](https://orig00.deviantart.net/209c/f/2017/341/d/1/interestingsurfaces_47_by_tuscriaturas-dbw172m.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_48.gif]](https://orig00.deviantart.net/15d3/f/2017/341/9/2/interestingsurfaces_48_by_tuscriaturas-dbw172k.gif)
Heart
![ImplicitPlot3D[(2 x^2 + y^2 + z^2 - 1)^3 - (x^2 z^3)/10 - y^2 z^3 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 3}, Boxed -> False, PlotPoints -> 100, ViewPoint -> {2.5, 1, 1}] ;](https://orig00.deviantart.net/6575/f/2017/341/d/6/interestingsurfaces_49_by_tuscriaturas-dbw172h.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_50.gif]](https://orig00.deviantart.net/7c69/f/2017/341/3/0/interestingsurfaces_50_by_tuscriaturas-dbw172d.gif)
Hunt Surface
![ImplicitPlot3D[4 (x^2 + y^2 + z^2 - 13)^3 + 27 (3 x^2 + y^2 - 4 z^2 - 12)^2 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False] ;](https://orig00.deviantart.net/7b8e/f/2017/341/f/5/interestingsurfaces_51_by_tuscriaturas-dbw172a.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_52.gif]](https://orig00.deviantart.net/3318/f/2017/341/4/b/interestingsurfaces_52_by_tuscriaturas-dbw1724.gif)
Hyperbolic Torus
![r0 = 0.6 ; r1 = 0.4 ; ImplicitPlot3D[x^4 + 2 x^2 y^2 - 2 x^2 z^2 - 2 (r0^2 + r1^2) x^2 + y^4 - ... r0^2 - r1^2)^2 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False, PlotPoints -> 30] ;](https://orig00.deviantart.net/beb9/f/2017/341/3/b/interestingsurfaces_53_by_tuscriaturas-dbw1721.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_54.gif]](https://orig00.deviantart.net/660d/f/2017/341/c/c/interestingsurfaces_54_by_tuscriaturas-dbw171y.gif)
Kampyle of Eudoxus
![a = 0.2 ; c = 1 ; ImplicitPlot3D[(y^2 + z^2) - c^2 x^4 + c^2 a^2 x^2 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False, PlotPoints -> 30] ;](https://orig00.deviantart.net/4b74/f/2017/341/f/6/interestingsurfaces_55_by_tuscriaturas-dbw171v.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_56.gif]](https://orig00.deviantart.net/6735/f/2017/341/2/0/interestingsurfaces_56_by_tuscriaturas-dbw171o.gif)
Kline Bottle
![ParametricPlot3D[{Cos[u] (Cos[u/2] (2^(1/2) + Cos[v]) + Sin[u/2] Sin[v] Cos[v]), Sin[u] (Cos[u ... , {u, 0, 4 Î}, {v, 0, 2 Î}, Boxed -> False, Axes -> False, PlotPoints -> 100] ;](https://orig00.deviantart.net/d331/f/2017/341/6/e/interestingsurfaces_57_by_tuscriaturas-dbw171l.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_58.gif]](https://orig00.deviantart.net/f952/f/2017/341/7/b/interestingsurfaces_58_by_tuscriaturas-dbw171h.gif)
![ImplicitPlot3D[(x^2 + y^2 + z^2 + 2 y - 1) ((x^2 + y^2 + z^2 - 2 y - 1)^2 - 8 z^2) + 16 x z (x ... 5}, {y, -5, 5}, {z, -5, 5}, Boxed -> False, PlotPoints -> 100, ViewPoint -> {4, 1, 1}] ;](https://orig00.deviantart.net/5a54/f/2017/341/b/d/interestingsurfaces_59_by_tuscriaturas-dbw171e.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_60.gif]](https://orig00.deviantart.net/2b5f/f/2017/341/7/9/interestingsurfaces_60_by_tuscriaturas-dbw1718.gif)
Kuen's Surface
![ParametricPlot3D[{(2 (Cos[u] + u Sin[u]) Sin[v])/(1 + u^2 Sin[v]^2), (2 (Sin[u] + u Cos[u]) Si ... {u, -4, 4}, {v, 0.05, Î - 0.05}, Boxed -> False, Axes -> False, PlotPoints -> 100] ;](https://orig00.deviantart.net/fc96/f/2017/341/0/3/interestingsurfaces_61_by_tuscriaturas-dbw1715.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_62.gif]](https://orig00.deviantart.net/5c57/f/2017/341/7/0/interestingsurfaces_62_by_tuscriaturas-dbw1711.gif)
Kummer Surface
![ImplicitPlot3D[x^4 + y^4 + z^4 - x^2 - y^2 - z^2 - x^2 y^2 - x^2 z^2 - y^2 z^2 + 1 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False, PlotPoints -> 50] ;](https://orig00.deviantart.net/fa67/f/2017/341/e/6/interestingsurfaces_63_by_tuscriaturas-dbw170z.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_64.gif]](https://orig00.deviantart.net/b539/f/2017/341/3/e/interestingsurfaces_64_by_tuscriaturas-dbw170u.gif)
Lemniscate of Gerono, or Eight Curve
![ImplicitPlot3D[x^4 - x^2 + y^2 + z^2 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False, PlotPoints -> 30] ;](https://orig00.deviantart.net/b2e6/f/2017/341/1/0/interestingsurfaces_65_by_tuscriaturas-dbw170s.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_66.gif]](https://orig00.deviantart.net/2796/f/2017/341/d/8/interestingsurfaces_66_by_tuscriaturas-dbw170o.gif)
Mitre Surface
![ImplicitPlot3D[4 x^2 (x^2 + y^2 + z^2) - y^2 (1 - y^2 - z^2) == 0, {x, -1, 1}, {y, -2, 2}, {z, -2, 2}, Boxed -> False, PlotPoints -> 30] ;](https://orig00.deviantart.net/5b1a/f/2017/341/7/e/interestingsurfaces_67_by_tuscriaturas-dbw170g.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_68.gif]](https://orig00.deviantart.net/a598/f/2017/341/6/3/interestingsurfaces_68_by_tuscriaturas-dbw1708.gif)
Moebius Strip
![ParametricPlot3D[{Cos[u] + v Cos[u/2] Cos[u], Sin[u] + v Cos[u/2] Sin[u], v Sin[u/2]}, {u, 0, 2 Î}, {v, -0.3, 0.3}, Boxed -> False, Axes -> False] ;](https://orig00.deviantart.net/9d84/f/2017/341/4/9/interestingsurfaces_69_by_tuscriaturas-dbw1704.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_70.gif]](https://orig00.deviantart.net/5716/f/2017/341/5/b/interestingsurfaces_70_by_tuscriaturas-dbw16zz.gif)
Nodal_Cubic
![ImplicitPlot3D[y^3 + z^3 - 6 y z == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False] ;](https://orig00.deviantart.net/5bc2/f/2017/341/b/2/interestingsurfaces_71_by_tuscriaturas-dbw16zs.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_72.gif]](https://orig00.deviantart.net/bfcf/f/2017/341/b/5/interestingsurfaces_72_by_tuscriaturas-dbw16zp.gif)
Odd Surface
![ImplicitPlot3D[z^2 x^2 - z^4 - 2 z x^2 + 2 z^3 + x^2 - z^2 - (x^2 - z)^2 - y^4 - 2 ... 2 y^2 z + y^2 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False, PlotPoints -> 100] ;](https://orig00.deviantart.net/dde7/f/2017/341/d/1/interestingsurfaces_73_by_tuscriaturas-dbw16zk.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_74.gif]](https://orig00.deviantart.net/13c1/f/2017/341/3/3/interestingsurfaces_74_by_tuscriaturas-dbw16zg.gif)
Paraboloid
![ImplicitPlot3D[x^2 - y + z^2 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/a0ed/f/2017/341/a/8/interestingsurfaces_75_by_tuscriaturas-dbw16zd.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_76.gif]](https://orig00.deviantart.net/b1ab/f/2017/341/e/b/interestingsurfaces_76_by_tuscriaturas-dbw16z7.gif)
Parabolic Torus
![r0 = 0.6 ; r1 = 0.5 ; ImplicitPlot3D[x^4 + 2 x^2 y^2 - 2 x^2 z - (r0^2 + r1^2) x^2 + y^4 - 2 y ... r0^2 - r1^2)^2 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False, PlotPoints -> 50] ;](https://orig00.deviantart.net/2022/f/2017/341/c/c/interestingsurfaces_77_by_tuscriaturas-dbw16z3.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_78.gif]](https://orig00.deviantart.net/d628/f/2017/341/4/a/interestingsurfaces_78_by_tuscriaturas-dbw16z1.gif)
Pillow/Tooth Object
![ImplicitPlot3D[x^4 + y^4 + z^4 - (x^2 + y^2 + z^2) == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False, PlotPoints -> 50] ;](https://orig00.deviantart.net/4c02/f/2017/341/e/b/interestingsurfaces_79_by_tuscriaturas-dbw16yv.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_80.gif]](https://orig00.deviantart.net/a38c/f/2017/341/8/c/interestingsurfaces_80_by_tuscriaturas-dbw16yr.gif)
Piriform
![ImplicitPlot3D[(x^4 - x^3) + y^2 + z^2 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False, PlotPoints -> 30] ;](https://orig00.deviantart.net/8ada/f/2017/341/0/e/interestingsurfaces_81_by_tuscriaturas-dbw16yo.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_82.gif]](https://orig00.deviantart.net/c8d7/f/2017/341/1/f/interestingsurfaces_82_by_tuscriaturas-dbw16yn.gif)
Quartic Paraboloid
![ImplicitPlot3D[x^4 + z^4 - y == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/5eaa/f/2017/341/d/f/interestingsurfaces_83_by_tuscriaturas-dbw16yk.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_84.gif]](https://orig00.deviantart.net/b72e/f/2017/341/8/3/interestingsurfaces_84_by_tuscriaturas-dbw16yj.gif)
Quartic Saddle
![ImplicitPlot3D[x^4 - z^4 - y == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/d44d/f/2017/341/1/e/interestingsurfaces_85_by_tuscriaturas-dbw16ye.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_86.gif]](https://orig00.deviantart.net/f9a2/f/2017/341/4/a/interestingsurfaces_86_by_tuscriaturas-dbw16ya.gif)
Steiners Roman Surface
![ImplicitPlot3D[x^2 y^2 + x^2 z^2 + y^2 z^2 + x y z == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False, PlotPoints -> 100] ;](https://orig00.deviantart.net/103b/f/2017/341/5/b/interestingsurfaces_87_by_tuscriaturas-dbw16y2.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_88.gif]](https://orig00.deviantart.net/9b25/f/2017/341/f/b/interestingsurfaces_88_by_tuscriaturas-dbw16xz.gif)
Strophoid
![a = 1 ; b = -0.1 ; c = 0.8 ; ImplicitPlot3D[(b - x) (y^2 + z^2) - c^2 a x^2 - c^2 x^3 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/8a4b/f/2017/341/b/6/interestingsurfaces_89_by_tuscriaturas-dbw16xy.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_90.gif]](https://orig00.deviantart.net/738e/f/2017/341/7/2/interestingsurfaces_90_by_tuscriaturas-dbw16xu.gif)
Right Strophoid
![a = 1 ; b = 1 ; c = 0.8 ; ImplicitPlot3D[(b - x) (y^2 + z^2) - c^2 a x^2 - c^2 x^3 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/ff44/f/2017/341/9/b/interestingsurfaces_91_by_tuscriaturas-dbw16xq.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_92.gif]](https://orig00.deviantart.net/b705/f/2017/341/6/5/interestingsurfaces_92_by_tuscriaturas-dbw16xo.gif)
Trisectrix of Maclaurin
![a = 1 ; b = 1/3 ; c = 0.8 ; ImplicitPlot3D[(b - x) (y^2 + z^2) - c^2 a x^2 - c^2 x^3 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/70cb/f/2017/341/8/e/interestingsurfaces_93_by_tuscriaturas-dbw16xj.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_94.gif]](https://orig00.deviantart.net/62dc/f/2017/341/f/d/interestingsurfaces_94_by_tuscriaturas-dbw16xi.gif)
Swallowtail
![ParametricPlot3D[{u v^2 + 3 v^4, -2 u v - 4 v^3, u}, {u, -2, 2}, {v, -0.8, 0.8}, Boxed -> False, Axes -> False] ;](https://orig00.deviantart.net/a97d/f/2017/341/b/3/interestingsurfaces_95_by_tuscriaturas-dbw16xd.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_96.gif]](https://orig00.deviantart.net/57a1/f/2017/341/8/9/interestingsurfaces_96_by_tuscriaturas-dbw16xa.gif)
Tangle
![ImplicitPlot3D[x^4 - 5 x^2 + y^4 - 5 y^2 + z^4 - 5 z^2 + 11.8 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False, PlotPoints -> 100] ;](https://orig00.deviantart.net/0c3c/f/2017/341/9/b/interestingsurfaces_97_by_tuscriaturas-dbw16x4.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_98.gif]](https://orig00.deviantart.net/76b6/f/2017/341/2/b/interestingsurfaces_98_by_tuscriaturas-dbw16x0.gif)
Torus
![r0 = 1 ; r1 = 0.5 ; ImplicitPlot3D[x^4 + y^4 + z^4 + 2 x^2 y^2 + 2 x^2 z^2 + 2 y^2 z^2 - 2 (r0 ... r0^2 - r1^2)^2 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Boxed -> False, PlotPoints -> 30] ;](https://orig00.deviantart.net/46c0/f/2017/341/b/3/interestingsurfaces_99_by_tuscriaturas-dbw16wu.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_100.gif]](https://orig00.deviantart.net/f29f/f/2017/341/8/0/interestingsurfaces_100_by_tuscriaturas-dbw16wq.gif)
Umblrella
![ImplicitPlot3D[x^2 - y z^2 == 0, {x, -3, 3}, {y, 0, 6}, {z, -3, 3}, Boxed -> False, PlotPoints -> 30] ;](https://orig00.deviantart.net/53b0/f/2017/341/2/8/interestingsurfaces_101_by_tuscriaturas-dbw16wl.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_102.gif]](https://orig00.deviantart.net/102c/f/2017/341/a/5/interestingsurfaces_102_by_tuscriaturas-dbw16wh.gif)
Witch of Agnesi
![a = 0.04 ; ImplicitPlot3D[a (y - 1) + (x^2 + z^2) y == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Boxed -> False] ;](https://orig00.deviantart.net/5f7e/f/2017/341/e/e/interestingsurfaces_103_by_tuscriaturas-dbw16wa.gif)
![[Graphics:HTMLFiles/InterestingSurfaces_104.gif]](https://orig00.deviantart.net/58ed/f/2017/341/2/2/interestingsurfaces_104_by_tuscriaturas-dbw16w3.gif)
Converted by Mathematica
(September 25, 2003)